Supplementary information

Tailoring spin waves in 2D transition metal phosphorus trichalcogenides via atomic-layer substitution

Alberto M. Ruiz,^{‡a} Dorye L. Esteras,^{‡a} Andrey Rybakov^a and José J. Baldoví^{*a}

a. Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, c/ Catedrático José Beltrán 2, 46980, Paterna, Spain

Table 1. Relative strength of NiPS_3 isotropic exchange and DMI

	U = 4	U = 5
D ₁ /J ₁	0.0028	0.0014
D ₁ '/J ₁ '	0.0013	0.0006
$ D_2/J_2 $	0.1276	0.0763
D2'/J2'	0.0593	0.0682
D ₃ /J ₃	0.0002	0.0001
D 3'/J3'	0.0002	0.0002

Table 2. Relative strength of NiPSe₃ isotropic exchange and DMI

	U = 4	U = 5
D ₁ /J ₁	0.2156	0.1421
D ₁ '/J ₁ '	0.8277	0.6292
$ D_2/J_2 $	0.6311	7.6345
D ₂ '/J ₂ '	0.3431	0.7972
D ₃ /J ₃	0.0522	0.0528
D ₃ '/J ₃ '	0.0231	0.0265

Table 3. Relative strength of MnPS_3 isotropic exchange and DMI

	U = 2	U = 4
D ₁ /J ₁	0.0005	0.0008
D ₁ '/J ₁ '	0.0008	0.0036
D ₂ /J ₂	0.0486	0.1444
D ₂ '/J ₂ '	0.0474	0.136
D ₃ /J ₃	0.0006	0.0023
D ₃ '/J ₃ '	0.001	0.0009

Table 4. Relative strength of $MnPSe_3$ isotropic exchange and DMI

	U = 2	U = 4
D ₁ /J ₁	0.0258	0.0267
D ₁ '/J ₁ '	0.0244	0.0268
$ D_2/J_2 $	0.13	0.2199
D ₂ '/J ₂ '	0.1273	0.2196
D ₃ /J ₃	0.0341	0.0291
D ₃ '/J ₃ '	0.0365	0.036

Figure S1 Projected density of states (orbital resolved) for $MnPS_3$. From top to down: Mn, P and S. Spin up (blue); Spin down (red); Grey color corresponds to the total density of states. The valence band edge has been placed at $E_F = 0$ eV.

Figure S2 Projected density of states (orbital resolved) for $MnPS_{1.5}Se_{1.5}$. From top to down: Mn, P, S and Se. Spin up (blue); Spin down (red); Grey color corresponds to the total density of states. The valence band edge has been placed at $E_F = 0$ eV.

Figure S3 Projected density of states (orbital resolved) for NiPS₃. From top to down: Ni, P and S. Spin up (blue); Spin down (red); Grey color corresponds to the total density of states. The valence band edge has been placed at $E_F = 0$ eV.

Figure S4 Projected density of states (orbital resolved) for NiPS_{1.5}Se_{1.5}. From top to down: Ni, P, S and Se. Spin up (blue); Spin down (red); Grey color corresponds to the total density of states. The valence band edge has been placed at $E_F = 0$ eV.

(c)

(d)

Figure S5 Valence electronic density differential plot with an isosurface value of 0.007 for the (a) top and (b) bottom view of $MnPS_3$; (c) top and (d) bottom view of $NiPS_3$. Color code: Mn (pink), Ni (clear blue), P (gray) and S (yellow). Blue (red) depicts electron accumulation (depletion) regions.